Supplemental Material

Heavy Metal Lead Exposure, Osteoporotic-like Phenotype in an Animal Model, and Depression of Wnt Signaling

Authors:

Eric E Beier ^{1,2}, Jason R Maher ³, Tzong-Jen Sheu ¹, Deborah A Cory-Slechta ², Andrew J Berger ³, Michael J Zuscik ¹, Edward J Puzas ^{1,2}

Table of Contents

- 1. Title Page
- 2. Table of Contents
- 3. Raman spectroscopy analysis
- 4. References
- 5. Supplemental Table S1
- 6. Supplemental Table S2
- 7. Supplemental Table S3
- 8. Supplemental Figure S1

Supplemental details of Raman spectroscopy analysis: Raman spectroscopy is capable of determining the biochemical composition of bone and has been applied to study both normal and osteoporotic tissue (Akkus et al. 2004; Boivin and Meunier 2003; Carden and Morris 2000). Differences in mineral and protein content between the rat femurs were characterized by metrics related to bone biochemistry. The mineral-to-matrix ratio (MTMR; PO₄³⁻ / CH₂ peak area ratio) describes the degree of phosphate mineralization. The carbonate-to-phosphate ratio (CTPR; CO₃²⁻ / PO₄³⁻ peak area ratio) describes the amount of carbonate substitution in the hydroxyapatite crystal lattice. Collagen maturity (1660 cm⁻¹ / 1690 cm⁻¹ peak intensity ratio) describes the ratio of mature (pyridinoline) to immature (dehydro-dihydroxylysinonorleucine) collagen cross-links. Finally, crystallinity (inverse of the PO₄³⁻ peak width at half-max intensity) is a measurement of mineral maturity, crystallite size, and the amount of substitution into the apatitic lattice (Faibish et al. 2006; Paschalis et al. 2001). Metrics were normalized by the average value calculated among rats in the control group.

Supplemental References:

Akkus O, Adar F, Schaffler MB. 2004. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34(3):443-453.

Boivin G, Meunier PJ. 2003. The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14 Suppl 3:S19-24.

Carden A, Morris MD. 2000. Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5(3):259-268.

Faibish D, Ott SM, Boskey AL. 2006. Mineral changes in osteoporosis: A review. Clin Orthop Relat Res 446:28-38.

Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn, Yamauchi M. 2001. Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16(10):1821–1828.

 $\label{eq:SupplementalTableS1}$ Primer Sequences used for Real-Time Polymerase Chain Reaction analyses.

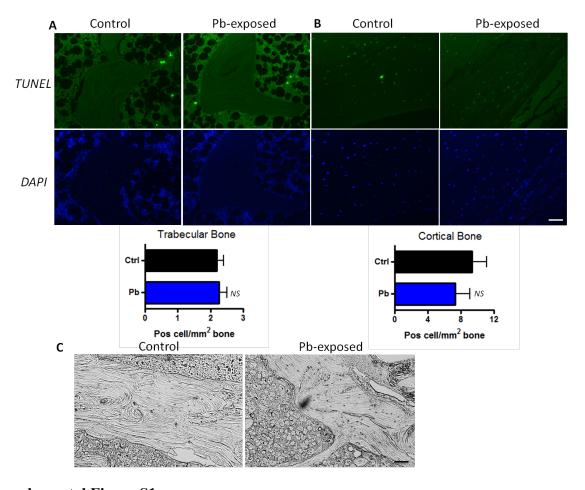
Gene	Forward Primer	Reverse Primer
Adipsin (cfd)	CGGATGACGACTCTGTGCAG	CATCGCTTGTAGGGTTCAGGG
Alkaline phosphatase	TCCTGACCAAAAACCTCAAAGG	TCGTTCATGCAGAGCCTGC
aP2	TGGGGACCTGGAAACTCGT	TCTCTGACCGGATGACGAC
β-actin	TGTTACCAACTGGGACGACA	CTGGGTCATCTTTTCCAGGT
β-catenin (mouse)	ATGGAGCCGGACAGAAAAGC	GAATCCAAGTAAGACTGCTGCT
β-catenin (rat)	GCTGACCTGATGGAGTTGGA	TCTTCTTCCTCAGGATTGCC
C/EBP α	ATAAGAACAGCAACGAGTACC	GCGGTCATTGTCACTGGTC
C/EBP δ	CCACGACCCCTGCCATGTAT	TGTGATTGCTGTTGAAGAGGTC
Osteocalcin	AGGGAGGATCAAGTCCCG	GAACAGACTCCGGCGCTA
Osterix	ACTGGCTAGGTGGTGGTCAG	GGTAGGGAGCTGGGTTAAGG
PPAR-γ	TATGGGTGAAACTCTGGGA	TGGCATCTCTGTGTCACCAT
Runx-2	GCCGGGAATGATGAGAACTA	GGACCGTCCACTGTCACTTT
Type 1 collagen	GCATGGCCAAGAAGACATCC	CCTCGGGTTTCCACGTCTC

Supplemental Table S2

Biomechanical strength of lumbar vertebrae and long bones are decreased in Pb-treated rats.

	Stiffness	Max Load	Energy to Failure	Yield Force
Compression ^a	(N/mm)	(N)	(mJ)	(N)
Control	700.99 ± 61.91	280.69 ± 30.93	86.50 ± 10.53	158.00 ± 33.94
Pb-exposed	$507.03 \pm 20.12^*$	$181.61 \pm 21.05^*$	68.25 ± 6.07	123.43 ± 36.52
4-point Bending ^b				
Control	637.73 ± 36.91	264.42 ± 10.04	73.53 ± 7.39	242.99 ± 6.33
Pb-exposed	590.45 ± 79.40	$204.58 \pm 17.45^{**}$	$50.52 \pm 5.83^*$	$178.73 \pm 16.37^{**}$

Data represent mean \pm SEM for 6 rats/group for compression and 9 rats/group for bending.


^aThird lumbar vertebra were subjected to compression to failure testing. ^bFemurs were subjected to 4-point bend testing. *Significant at p < 0.05, **significant at p < 0.005.

Supplemental Table S3

Biomechanical strength of lumbar vertebrae and long bones are decreased in Pb-treated rats.

Control	Pb-exposed
1.00 ± 0.13	$0.76 \pm 0.09*$
1.00 ± 0.07	$1.13 \pm 0.08*$
1.00 ± 0.10	$1.47 \pm 0.19*$
1.00 ± 0.002	0.992 ± 0.005 *
	1.00 ± 0.13 1.00 ± 0.07 1.00 ± 0.10

Biochemical parameters of each group derived from the Raman spectra and normalized to control values. Data represent mean \pm SEM for 4 rats/group, *p< 0.05

Supplemental Figure S1

Pb exposure had no effect on cell viability and bone structure. No change was seen in positive TUNEL staining between 0-Pb and 50-Pb treated rats in either trabecular (A) or cortical bone (B). Normal woven bone was observed in cortical bone (C). Data represent mean \pm SEM for 3 samples. Scale bar: (A, B) 500 μ m, (C) 100 μ m, n=3.